Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis.

نویسندگان

  • Nathan J Sniadecki
  • Corinne M Lamb
  • Yaohua Liu
  • Christopher S Chen
  • Daniel H Reich
چکیده

Cells use force as a mechanical signal to sense and respond to their microenvironment. Understanding how mechanical forces affect living cells requires the development of tool sets that can apply nanoscale forces and also measure cellular traction forces. However, there has been a lack of techniques that integrate actuation and sensing components to study force as a mechanical signal. Here, we describe a system that uses an array of elastomeric microposts to apply external forces to cells through cobalt nanowires embedded inside the microposts. We first biochemically treat the posts' surfaces to restrict cell adhesion to the posts' tips. Then by applying a uniform magnetic field (B<0.3 T), we induce magnetic torque on the nanowires that is transmitted to a cell's adhesion site as an external force. We have achieved external forces of up to 45 nN, which is in the upper range of current nanoscale force-probing techniques. Nonmagnetic microposts, similarly prepared but without nanowires, surround the magnetic microposts and are used to measure the traction forces and changes in cell mechanics. We record the magnitude and direction of the external force and the traction forces by optically measuring the deflection of the microposts, which linearly deflect as cantilever springs. With this approach, we can measure traction forces before and after force stimulation in order to monitor cellular response to forces. We present the fabrication methods, magnetic force characterization, and image analysis techniques used to achieve the measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magneto-mechanical Stimulation of Bone Marrow Mesenchymal Stromal Cells for Chondrogenic Differentiation Studies

Mechanical interaction of cells and their surroundings are prominent in mechanically active tissues such as cartilage. Chondrocytes regulate their growth, matrix synthesis, metabolism, and differentiation in response to mechanical loadings. Cells sense and respond to applied physical forces through mechanosensors such as integrin receptors. Herein, we examine the role of mechanical stimulation ...

متن کامل

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

Fabrication and Structural, Mechanical, and Biological Characterization of Vancomycin-Loaded Chitosan-Hydroxyapatite-Gelatin Beads for Local Treatment of Osteomyelitis

 Background and purpose: Topical antibiotic medication is an alternative method in treatment of local infections, especially osteomyelitis. Currently several biomaterials are used for this purpose. The present study focused on the fabrication and characterization of chitosan and Vancomycin (VCM)-loaded chitosan (CS)-hydroxyapatite (HA)-gelatin (G) bead in treatment of osteomyelitis. Materials ...

متن کامل

Facile Magnesium Doped Zinc Oxide ‎Nanoparticle Fabrication and ‎Characterization for Biological Benefits

   Zinc oxide (ZnO) is the most common and widely utilized nanomaterial for biological applications due to their unique characteristics, such as biocompatibility, biosafety and antimicrobial along with thermal stability and mechanical strength. Magnesium (Cu) is considered as a significant dopant for ZnO due to their almost similar ionic radii and their role in biological activitie...

متن کامل

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 2008